110 research outputs found

    Space-time percolation and detection by mobile nodes

    Get PDF
    Consider the model where nodes are initially distributed as a Poisson point process with intensity λ\lambda over Rd\mathbb{R}^d and are moving in continuous time according to independent Brownian motions. We assume that nodes are capable of detecting all points within distance rr of their location and study the problem of determining the first time at which a target particle, which is initially placed at the origin of Rd\mathbb{R}^d, is detected by at least one node. We consider the case where the target particle can move according to any continuous function and can adapt its motion based on the location of the nodes. We show that there exists a sufficiently large value of λ\lambda so that the target will eventually be detected almost surely. This means that the target cannot evade detection even if it has full information about the past, present and future locations of the nodes. Also, this establishes a phase transition for λ\lambda since, for small enough λ\lambda, with positive probability the target can avoid detection forever. A key ingredient of our proof is to use fractal percolation and multi-scale analysis to show that cells with a small density of nodes do not percolate in space and time.Comment: Published at http://dx.doi.org/10.1214/14-AAP1052 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Coexistence of competing first passage percolation on hyperbolic graphs

    Get PDF
    We study a natural growth process with competition, which was recently introduced to analyze MDLA, a challenging model for the growth of an aggregate by diffusing particles. The growth process consists of two first-passage percolation processes FPP1\text{FPP}_1 and FPPλ\text{FPP}_\lambda, spreading with rates 11 and λ>0\lambda>0 respectively, on a graph GG. FPP1\text{FPP}_1 starts from a single vertex at the origin oo, while the initial configuration of FPPλ\text{FPP}_\lambda consists of infinitely many \emph{seeds} distributed according to a product of Bernoulli measures of parameter μ>0\mu>0 on V(G){o}V(G)\setminus \{o\}. FPP1\text{FPP}_1 starts spreading from time 0, while each seed of FPPλ\text{FPP}_\lambda only starts spreading after it has been reached by either FPP1\text{FPP}_1 or FPPλ\text{FPP}_\lambda. A fundamental question in this model, and in growth processes with competition in general, is whether the two processes coexist (i.e., both produce infinite clusters) with positive probability. We show that this is the case when GG is vertex transitive, non-amenable and hyperbolic, in particular, for any λ>0\lambda>0 there is a μ0=μ0(G,λ)>0\mu_0=\mu_0(G,\lambda)>0 such that for all μ(0,μ0)\mu\in(0,\mu_0) the two processes coexist with positive probability. This is the first non-trivial instance where coexistence is established for this model. We also show that FPPλ\text{FPP}_\lambda produces an infinite cluster almost surely for any positive λ,μ\lambda,\mu, establishing fundamental differences with the behavior of such processes on Zd\mathbb{Z}^d.Comment: 53 pages, 13 figure

    Multi-Particle Diffusion Limited Aggregation

    Full text link
    We consider a stochastic aggregation model on Z^d. Start with particles located at the vertices of the lattice, initially distributed according to the product Bernoulli measure with parameter \mu. In addition, there is an aggregate, which initially consists of the origin. Non-aggregated particles move as continuous time simple random walks obeying the exclusion rule, whereas aggregated particles do not move. The aggregate grows by attaching particles to its surface whenever a particle attempts to jump onto it. This evolution is referred to as multi-particle diffusion limited aggregation. Our main result states that if on d>1 the initial density of particles is large enough, then with positive probability the aggregate has linearly growing arms, i.e. if F(t) denotes the point of the aggregate furthest away from the origin at time t>0, then there exists a constant c>0 so that |F(t)|>ct, for all t eventually. The key conceptual element of our analysis is the introduction and study of a new growth process. Consider a first passage percolation process, called type 1, starting from the origin. Whenever type 1 is about to occupy a new vertex, with positive probability, instead of doing it, it gives rise to another first passage percolation process, called type 2, which starts to spread from that vertex. Each vertex gets occupied only by the process that arrives to it first. This process may have three phases: an extinction phase, where type 1 gets eventually surrounded by type 2 clusters, a coexistence phase, where infinite clusters of both types emerge, and a strong survival phase, where type 1 produces an infinite cluster that successfully surrounds all type 2 clusters. Understanding the behavior of this process in its various phases is of mathematical interest on its own right. We establish the existence of a strong survival phase, and use this to show our main result.Comment: More thorough explanations in some steps of the proof

    Random lattice triangulations: Structure and algorithms

    Get PDF
    The paper concerns lattice triangulations, that is, triangulations of the integer points in a polygon in R2\mathbb{R}^2 whose vertices are also integer points. Lattice triangulations have been studied extensively both as geometric objects in their own right and by virtue of applications in algebraic geometry. Our focus is on random triangulations in which a triangulation σ\sigma has weight λσ\lambda^{|\sigma|}, where λ\lambda is a positive real parameter, and σ|\sigma| is the total length of the edges in σ\sigma. Empirically, this model exhibits a "phase transition" at λ=1\lambda=1 (corresponding to the uniform distribution): for λ<1\lambda<1 distant edges behave essentially independently, while for λ>1\lambda>1 very large regions of aligned edges appear. We substantiate this picture as follows. For λ<1\lambda<1 sufficiently small, we show that correlations between edges decay exponentially with distance (suitably defined), and also that the Glauber dynamics (a local Markov chain based on flipping edges) is rapidly mixing (in time polynomial in the number of edges in the triangulation). This dynamics has been proposed by several authors as an algorithm for generating random triangulations. By contrast, for λ>1\lambda>1 we show that the mixing time is exponential. These are apparently the first rigorous quantitative results on the structure and dynamics of random lattice triangulations.Comment: Published at http://dx.doi.org/10.1214/14-AAP1033 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore